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Abstract 

The use of inertia welding in the aerospace industry has been steadily increasing owing to the significant 

improvements it provides in joint quality, compared with the use of fusion welding. This chapter 

introduces the process, with respect to its operation, parameters, differences from other friction welding 

techniques and equipment. It also explains the application of the technique and the selection of the 

process parameters, and the different mathematical, analytical and numerical approaches that are used 

to model the thermal fields and residual stress development. Details of the microstructural, mechanical 

properties and residual stress development in inertia friction-welded Ni-based superalloys, titanium 

alloys, steels and other alloys are also discussed. 
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Abstract 

Laser welding is a high-power-density fusion-welding process that produces high aspect ratio welds with 

a relatively low heat input compared with arc-welding processes. Furthermore, laser welding can be 

performed “out of vacuum” and the fiber-optic delivery of near-infra-red solid-state laser beams provides 

increased flexibility compared with other joining technologies. Consequently, laser welding may be 

considered as a principal candidate for the production of metallic aerospace components for high-

performance environments. This chapter details laser technology and the laser-welding process, and 

reviews research concerned with the laser welding of titanium alloys. 
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Abstract 

Linear friction welding is a solid-state joining process, which involves forcing a stationary part against one 

that is oscillating in a linear manner. The frictional heat generated at the interface between parts, 

together with the applied force, cause a plasticized layer to form, and toward the end of the joining 

process the parts are effectively forged together with some plasticized material remaining at the weld 

interface. The process is currently established as a niche technology for the fabrication of titanium-alloy 

bladed disc assemblies in aero engines, however development work is currently being undertaken to 

allow the process to be used in a wider variety of applications utilizing materials other than titanium 

alloys. Use of the process for near-net-shape manufacture of parts in high-value materials certainly 

seems a likely future application for the process. This chapter will cover relevant published work 

conducted to date on linear friction welding. The basics of the process will firstly be described followed by 

a description of the workings of linear friction welding machines and their operation. The chapter will then 

go on to give a detailed account of work done on the linear friction welding of titanium alloys, nickel-

based superalloys and various other materials.  
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Abstract 

This chapter first describes the origin and major characteristics of the hybrid laser-arc welding technique. 

Then, fundamentals of this welding technique, such as laser-plasma interaction, keyhole formation and 

collapse, weld pool dynamics, metal melting and solidification, etc., are elaborated. Finally, applications, 

current research and development, and future challenges and development of hybrid laser-arc welding of 

aeronautical materials such as magnesium, aluminum, and magnesium alloys are discussed.  
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Abstract 

Electron beam welding, despite a long history and widespread arc and laser technology, is still widely 

used in industry. The main applications for this high efficiency welding process are automotive, 

electronics, electrical engineering, aerospace and mechanical engineering industry. The technology 

ensures high-quality welded joints in structural metals in a wide range of thickness from 0.025 to 300 

mm. It is also used for the production of films and coatings by deposition and surface modification. In the 

paper approximated examples of the use of the electron beam are given by the welding, rapid 

prototyping, texturing surface, cladding with wire and powder as well as alloying. It also provides 

information about the possible techniques that can be used during these processes and the trends in 

electron beam welding.  
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control, Systems monitoring 
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Abstract 

The formation of heat affected zone cracking in fusion-welded materials is a major concern in the design 

and manufacture of nickel-based superalloy welded assemblies. It is a general weldability problem that 

affects a large number of advanced highly alloyed cast and wrought nickel base superalloys, particularly, 

those strengthened by ordered L12 intermetallic Ni3(Al, Ti or Ta) γ′ precipitates. While the problem of 

fusion zone cracking is also encountered in many of these alloys, it does not pose as great a challenge as 

HAZ liquation cracking because it can be essentially managed effectively by proper selection of filler 

materials and appropriate welding procedures. HAZ liquation cracking is, however, more insidious since 

the factors and phenomena contributing to its occurrence are often related to the composition of the 

material and its microstructure, both of which have been optimized to achieve desirable high temperature 

base metal properties. The HAZ cracking in the superalloys is generally intergranular and it usually 

associated with the formation of liquid film on HAZ grain boundaries during welding. The inability of this 

film to accommodate thermally and/or mechanically induced stresses experience during cooling results in 

grain boundary microfissuring through decohesion along one of the solid-liquid interfaces on the grain 

boundary and, thus, it is sometimes referred to as liquation cracking, hot cracking or hot tearing. Liquid 

film stage is the common element in various manifestations of hot tear near the complete solidification 

point of metals. The cooling cycle of HAZ intergranular liquid is somewhat similar to the final stages of 

solidification of castings and fusion zone in welds, hence, to a first approximation, the criteria that govern 

weld solidification cracking can be adopted to explain liquation cracking in the HAZ of weldments, and 

these are considered in this chapter.  
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Nickel-based superalloys, Welding processes, Heat-affected zone microfissuring, Heat treatments 

Microstructure, Minor elements 

8. Improvements in bonding metals for aerospace and other applications 

A.Kwakernaak, J.Hofstede, J.Poulis, R.Benedictus - Delft University of Technology, Delft, The 

Netherlands 

Pages 229-275 

8.1. Introduction: Key problems in metal bonding 

8.2. Developments in the range of adhesives for metal 

8.2.1. Modified phenolic adhesives 

8.2.2. Epoxy adhesives 

8.2.2.1. Modified epoxy adhesives 

8.2.2.2. Out-of-autoclave curing methods 

8.2.2.3. Automotive bonding 

8.2.2.4. Assembly bonding 

8.2.3. Polyurethane adhesives 

8.2.4. Methyl methacrylate adhesives 

8.2.5. Adhesives with high flexibility 

8.2.6. Improvements in temperature resistance of adhesives 

8.2.6.1. Glass transition temperature 

8.2.6.2. Overlap shear strength at elevated temperature 

8.3. Developments in surface treatment techniques for metal 



Welding and Joining of Aerospace Materials | Second Edition | 2020 

Table of contents 

Strona 11 z 17 

8.3.1. Surface treatment of aluminum alloys 

8.3.1.1. Etching processes for aluminum alloys 

8.3.1.2. Anodizing processes for aluminum alloys 

8.3.1.3. Conversion coatings for aluminum alloys 

8.3.1.4. Chromium-free anodizing treatments for aluminum 

8.3.2. Surface treatment of steel and stainless steel 

8.3.2.1. Surface treatment of carbon steel 

8.3.2.2. Surface treatment of stainless steel 

8.3.3. Surface treatment of titanium 

8.3.3.1. Etching and conversion treatments 

8.3.3.2. Anodizing surface treatments 

8.3.4. Development of sol-gel surface treatment for aluminum, steel and titanium 

8.3.5. Developments in bonding primers 

8.4. Developments in joint design 

8.4.1. Shear stress distribution of bonded overlap joints 

8.4.2. Effect of joint geometry, material and type of adhesive for lap joints 

8.4.3. Eccentricity in overlap joints 

8.4.4. Joint optimization 

8.4.5. Adhesive-bonded laminates 

8.4.6. Fiber metal laminates (FMLs) 

8.4.7. Weight and cost reduction 

8.4.8. Sandwich structures 

8.4.9. Bonded repairs 

8.4.10. Bonded window frames 

8.5. Developments in modeling and testing the effectiveness of adhesive-bonded metal joints 

8.5.1. Analytical solutions 

8.5.2. Numerical tools 

8.5.3. Failure load prediction 

8.5.4. Fracture mechanics approach 

8.5.5. Improved analytical methods for fatigue-crack-growth prediction in FML 

8.5.6. Testing adhesive-bonded joints 

8.5.7. Determination of bondline strains by fiber-optic sensors 

8.5.8. Development of optical digital video microscopy to measure bondline strains 

8.6. Future trends 

8.7. Sources of further information and advice 

References 

Abstract 

This chapter discusses the developments in materials, processes and design, which make adhesive 

bonding an efficient and durable joining technology for metal structures. The chapter reviews the 

developments in adhesives and surface treatments for metal-bonded joints, which have improved the 

mechanical properties and processing characteristics, as well as significantly enhanced durability under 

humid or corrosive environments. Developments in joint design are discussed, from simple lap joints to 

complex bonded metal laminates. Further improvements in modeling and testing techniques are 

reviewed, which have led to more accurate prediction and determination of joint strength and durability.  
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Abstract 

The problem of bonding composite structures to metals is the main focus of this chapter. The bonding of 

composite to a metal creates two important issues. First, the problem of differences in the thermal 

expansion coefficient of the composite and the metal, and second, the differences in treatment of the 

substrates to ensure the development of good interfacial strength. This chapter considers appropriate 

processes for the preparation of the surfaces of the metal and composite prior to bonding and also the 
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selection of the resin system. The topics of environmental aging and nondestructive testing are briefly 

considered.  
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Abstract 

Diffusion bonding is a solid-state bonding process. The metal components being joined undergo only 

microscopic deformation, and the joining region is homogeneous—without secondary materials or liquid 

phases. This chapter investigates diffusion bonding of titanium, steel and copper alloys used in the 

fabrication of several aerospace components with various complex configurations. The result shows that 

the diffusion-bonding method can be successfully used with blow forming to form near-net-shape 

aerospace components, including high-pressure tanks for attitude control of spacecraft, a combustion 

chamber with copper cooling channels and lightweight structural panels.  
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Abstract 

High-temperature brazing in aerospace engineering is gaining much more attention day by day. The 

process usually takes place in a vacuum furnace or controlled atmosphere at above 900 °C to create 

high-strength bonds with good corrosion and oxidation resistance. This chapter reviews commonly used 

brazing filler metals such as nickel, silver, titanium, gold, cobalt, palladium alloys and the new developing 

alloys in this field. The chapter additionally highlights the processes/techniques for brazing and 

equipments together with the novel innovation in this topic and the new trends in brazing at high 

temperature as well. There is particular emphasis on self-propagating high-temperature systems, 

transient liquid-phase bonding and rapidly solidified amorphous filler metals.  
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Abstract 

Self-piercing riveting (SPR) has become a significant joining technique for the automotive and aerospace 

applications of aluminum sheets. Quality control in this locale has progressed at an altogether more 

leisurely rate than other areas of mechanical joining (e.g. spotweld) and is underdeveloped. Testing the 

quality mechanical interlock is often achieved by destructive testing, which results in material and time 
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wastage. The solution is online monitoring of the self-piercing riveting process to provide nondestructive 

testing of the mechanical interlock. Introducing sensors into the process facilitates real time data 

acquisition, which can be used to determine the quality of the joint.  
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Abstract 

This chapter first reviews several aspects of the riveting process to ensure that riveted joints will have 

excellent fatigue performance. These aspects include solid rivets, joint design rules, several experimental 

and numerical methods to determine the residual stress/strain and interference in riveted joints, and the 

current approach for studying the riveting process. It then provides three case studies using experimental 

and finite element methods to assess: (i) the effect of the riveting process on the residual stress/strain in 

joints, (ii) the stress condition in riveted lap joints when the joints are remotely loaded in tension, and 

(iii) the fatigue life using an analytical methodology. Concluding remarks and future work on potential 

development directions for riveting tools, rivets, and riveted-bonded attachment method are briefly 

provided.  
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Abstract 

While media coverage of an air accident is very dramatic and is invariably associated with the loss of 

lives, the number of air accidents has been steadily decreasing over the last 30 years (Aviation Safety 

Network 2017 statistics) and air travel is considered to be the safest form of travel. In 1998 the 

International Civil Aviation Organisation (ICAO) established a universal safety oversight audit 

programme, comprised of regular, mandatory, systematic and harmonized safety audits to be carried out 

by ICAO on all Contracting States. Since 1 January 1999, the Safety Oversight Audit (SOA) Section of the 

Air Navigation Bureau of ICAO has been conducting safety oversight audits of the civil aviation authorities 

of member countries in relation to personnel licensing, operation of aircraft, and airworthiness. The audits 

are designed to determine the status of States' implementation of the critical elements of a safety 

oversight system and the implementation of relevant ICAO Standards and Recommended Practices, 

associated procedures, guidance material and safety-related practices. In addition, in March 2006 the EU 

published a Community list of air carriers subject to an operating ban within the European Community. 

Bans and operational restrictions are only imposed based on evidence of violation of objective and 

transparent criteria. These criteria focus on the results of checks carried out in European airports; the use 

of poorly maintained, antiquated or obsolete aircraft; the inability of the airlines to rectify shortcomings 
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identified during inspections; and the inability of the authority responsible for overseeing an airline to 

perform its task properly. Member States reported that five countries have an inadequate system for 

regulatory oversight. One important consequence of the black list will be to root out the practice of flags 

of convenience whereby some countries issue Air Operation Certificates to dubious airline companies 

(Aviation Safety Network safety assessment information). 
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